

Diagenesis and dolomitization of Jurassic carbonate rocks in the SE Bohemian Massif

Juraj Francu – Lukáš Jurenka – Petr Jirman Czech Geological Survey

Jurassic of the SE Bohemian Massif, Czech Republic

Lithostratigraphy of the Jurassic, SE Bohemian Massif, Czech Republic

(modified from Ladwein 1988; Eliáš and Wessely 1990 and Adámek 2005)

Jurassic rocks – Diagenesis in depth

Mikulov Fm. - oil & gas source rocks – Thermal maturation

Jurassic rocks – Flurescence Light Microscopy

Mikulov Fm. - oil & gas source rock Organic petrology: la – lamalginite (bright yellow fluorescence)

Kurdejov Fm. – Fossiliferous oolitic limestone Nem-1, 2280 m

rF – recrystallized **fossils** with micrite envelope of **isopachous cement** rest of space is filled with **blocky calcite cement (bC)**.

c-d): deformed ooid – the cracked micritic coating, pressure dissolution

PPL

Kurdejov Fm. – Biodetritic oolitic limestone Nem-1, 2591 m

Pressure dissolution at the contact of grains: **echinoderm** (ech), **bivalve** (biv), **grain**

Fragment of bivalve (biv), peloid (Pe), ooid (O) and other allochems in micrite.

Kurdejov Fm. – Biodetritic oolitic dolomitic limestone

D - euhedral crystals of dolomite growing from micrite

PPL

NP-2, 1254 m

rounded fragment of bivalve (B), coated grain (cG), Q – quartz, F – fossils.

Kurdejov Fm. – Biodetritic oolitic limestone

Mus-2, 1096 m

fossils recrystalized and replaced by micrite calcite

fragment of **Echinoderm** (ech) and syntaxial calcite cement (sC) growth

Kurdejov Fm. – Biodetritic oolitic limestone

Mik-1 , 1842 m

Ooid filled with **replacement calcite cement** (O) **Dolomite** crystals (D)

blocky calcite cement (bC), pressure seams

Nikolcice Fm. – Dolomitic sandstone Nik-1A, 1911 m

P – free pore space filled with blue epoxy

Dol – crystal of zonal cementation dolomite

Vranovice Fm. – Dolomitic limestones NP-1, 1075 m

P – free pore space filled with blue epoxy resin , rD – replacement dolomite

pD – pore-lining dolomite (arrow in fluorescence light)

Vranovice Fm. – fracture and cavernous porosity

altered peloidal-bioclastic wackestone with fracture porosity

polymodal planar-s dolomite with cavernous porosity

Optical porosity estimated by image analysis of color-coded pore space

Jurassic Rocks – Porosity with Depth

Carbonate Depositional Environments & Lithofacies

Conclusions

- Fluorescence microscopy provides new details in paleontology, facial types and diagenesis of carbonates.
- Two generations of dolomite were identified:

1) matrix dolomite and

2) zonal cementation dolomite.

- Cement generations follow changes in the formation water chemical composition during the diagenesis.
- Jurassic carbonates exhibit **cavernous and fracture porosity** controled by dolomitization and tectonic deformation.
- Major carbonate diagenesis occurs in thermally immature zone
- Jurassic petroleum system includes both
 source rocks Mikulov Fm., kerogen type II
 reservoirs Gresten, Nikolcice, Vranovice and Kurdejov fms.

Acknowledgements:

The CO₂-SPICER project benefits from a € 2.32 mil. grant from Norway and Technology Agency of the Czech Republic;
 MND for core samples and geology

Thank you for your attention!

Tentatively proposed new Jurassic carbonate "mon" microfacies