Preparatory work for CO2 pilot injection into naturally fractured carbonate reservoir in the Czech Republic

Milan PAGAC (MND) pagac@mnd.cz

P. JIRMAN (CGS) M. LIBCINSKA (VSB Ostrava) R. BERENBLYUM, A. NERMOEN, E. FORD (NORCE) & the CO2-SPICER project team

https://co2-spicer.geology.cz/en

- Α т
- č R

Norway grants

CO2-SPICER project

- Main project objective is to prepare implementation of a CO2 geological storage <u>pilot</u> project at the mature Zar-3 oil field (achieve implementation-ready stage, no real injection, not large-scale project)
- Czech-Norwegian cooperation within the project

Field's introduction

• Zar-3 field is located 30 km SE from Brno on the

SE slopes of the Bohemian Massif

- Discovered in 2001 @ depth 1565 1872 m TVD
- Oil field with gas cap and aquifer
- Naturally fractured carbonates Jurassic age

Field's introduction

- 8 production wells were drilled, 4 of them horizontal
- Nearing the end of oil production

Inputs into geological model

3D seismic

FMS/FMI - fractures

Open-hole logs

Whole core diameter analysis

Geomechanics – determining the safe operation window during CO2 injection

- Purpose: to identify the safe operation window to ensure mechanical stability (At what reservoir P and T will the reservoir or cap rock fail? At what probability?)
- Experimental program: is based on combined use of the strength failure envelope (from tensile, triaxial and unconfined compressive strength tests) and the estimated field stresses.
- Results: Sealing rocks stronger than reservoir rocks. If properly monitored, then rock failure can be predicted and actions can be taken to avoid propagation into overburden, stronger rocks.

Re-open existing tensile fractures

Geomechanics – determining the safe operation window during CO2 injection Reservoir depth: 1750 m

During CO2 injection the pore pressure and temperature are the only operationally controllable parameter. We use:

- Uncertain input parameters → Range of attainable stresses (i.e. a cloud of data)
- Increased pressure reduces the mean effective stress → shifts stress level to the left (yellow)
- Cooling by ΔT at constant overburden weight and uniaxial strain reduce s₃ → Shifts the stress level in NW direction (orange)
- Cooling and re-pressurization combined pushes cloud of stresses towards failure line (grey)
- Count the number of instances that exceed the experimentally determined failure line → probability of failure

Geomechanics – Probability of failure as function of pore pressure and reservoir temperature – Monte Carlo simulation

2 000 realizations of possible field stresses, initial pore pressures, Biot coefficient, and thermo-elastic coupling coefficient for each pore pressure and temperature varied

- Drawn from probability density functions measured in lab.
- Determine number of unstable instances for each pressure and temperature (between 17.2 and 36 MPa and 52 to 10°C)
- Safe injection envelope (green zone) can be identified

Safe

Probability of failure

Unsafe

Geomechanics – Depletion limit

A plot of theoretical depletion down to 0 MPa shows that the cloud of data remains inside the compaction failure curve

The geomechanical compaction strength (grey dashed line to the right) of the cores tested seem to withstand the effective stress increase related to drawdown to 0 MPa as the cloud if data is well within the safe operation window.

Geomechanics – Transmissibility multiplier

- Measure permeability and porosity during confining pressure cycle.
- Convert to pore pressure variation using the effective stress relation (x-axis)
- Re-scale by permeability at an equivalent pore pressure of 17.2 MPa
- Enables transmiscibility multiplier → relative changes in permeability as pore pressure is changed.
- Plot display spread in data for 10 reservoir cores.
- Next slide: Pore volume rescaled by the pore pressure at 17.2 MPa equivalent pore pressure → pore volume multiplier

Geomechanics – Pore Volume multiplier

		ROCKTAB	Generated	: Petrei
		10	0.9592	0.7831
		20	0.9617	0.7961
		30	0.9642	0.8091
		40	0.9667	0.8221
1.2	0	50	0.9692	0.8351
	ZA4A_c1_b5_b, 1.9%, 17.3	60	0.9717	0.8481
	mD, R.	70	0.9742	0.8611
. 1.1	.5	80	0.9767	0.8741
-	\times mD, R. \times 744A c1 b5 a 157% 118	90	0.9792	0.8871
. <u>1</u> 1 1	0 mD B	100	0.9817	0.9001
<u>ia</u> 1.1	- ZA4A c3 b3 a, 3.97%, 6.6 Input into Eclipse	110	0.9842	0.9131
Ξ	mD, R.	120	0.9867	0.9261
2 1.0	↓5	130	0.9892	0.9391
ε	mD, R.	140	0.9917	0.9521
ue 1		150	0.9942	0.9651
5 1.0	12.95 mD, R.	160	0.9967	0.9781
0		170	0.9992	0.9911
> 0.9	25 X ZA4A c4 b2 a, 4.84%, 3.46	180	1.0017	1.0041
JC.	mD, R. Nik.	190	1.0042	1.0171
Å	ZA6A_c1_b1_a , 10.71%,	200	1.0067	1.0301
0.9	10 19.2 mD, R.	210	1.0092	1.0431
	X ZA6A_c1_b2_a, 6.11%, 3.22	220	1.0117	1.0561
0.0	mD, R.	230	1.0142	1.0691
0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	240	1.0167	1.0821
	0.0 10.0 20.0 30.0 40.0 50.0	250	1.0192	1.0951
	Pore pressure, MPa	260	1.0217	1.1081
		270	1.0242	1.1211
		280	1.0267	1.1341
		290	1.0292	1.1471
		300	1.0317	1.1601
		310	1.0342	1.1731
		320	1.0367	1.1861
		330	1.0392	1.1991

12

Geochemistry – Experiments in React chamber

RESULTS OF WATER SAMPLES

DEVELOPMENT OF THE COMPOSITION OF THE INPUT BRINE AFTER INTERACTION WITH THE ROCK AND CO₂ SATURATION

parameter	pН	ρ při 15 °C	vodivost	SO4-2	Cŀ	HCO3-	NH4+	К	Mg	Na	Ca	Li	Sr	Mn	Fe
units	[-]	[g/cm3]	[mS/cm]	[mg/l]											
MND analysis	7.0715	1,017 \ /	36,5 🛉	535 🕇	12300	2580 4	32,6 🕇	252 🕴	107,0	8570 🕇	111	3,17	19,2	0,01 🛉	0,35 🔺
1st month analysis	6.716	1,016 \/	36,9	640	13251	2702	9,1	257	99,6	4570	285	2,75	17	0,88	0,01
3rd months analysis	6.896	1,016 👗	35,3	660	12728	3440	15,8	256	99,3	6260	315	2,88	13,6	1,08	95
4th months analysis	7.220	1,016 / \	37,2	550	13047	3226	19,4	463	94,8	8750	348	2,78	16,3	0,731	18,9
6th months analysis	6.813	1,018/ \	38,0	540 🗸	12444	3660	19,1	334	92,7 🗸	6770	702	2,72	13,4	0,421	60,8

legend:

decrease values

fluctuating values

Gechemistry – Results from React chamber and modelling

- Dissolution of primary dolomite and precipitation of calcite during the first month of experiment (6 months experiment)
- Precipitation of secondary phases (kaolinite, muscovite, feldspar) reduces porosity and permeability depending on the distance from the injector, time, and dissolved CO2 concentration.

CO2-SPICER: Risk assessment process

- Risk assessment process is performed for the area of interest including the Zar-3 field in accordance with ISO31000:2018 and EU CCS Directive 2009/31/EC. Three main parts:
 - Risk identification
 - Risk analysis
 - Risk evaluation

ISO31000:2018

Risk identification

Bow-tie diagram

Leakage from abandoned wellbores
Leakage through caprock
Leakage through faults/fractures
Leakage from spill point

Main risks

Features/Events/Processes (FEP) analysis

Risk analysis

CO2 leakage simulations from abandoned wellbores using a stochastic framework and wellspecific data. Local metereological data used to simulate **CO2 dispersion** from release points

ZA1 ____ZA3 ____ZA3

CO2-SPICER: Risk evaluation SPICER

- Ongoing: CO2 dispersion simulations will in turn be used as a basis for determining possible consequences for risk receptors, and as a basis for evaluating acceptable risk.

CO2 release scenarios: Examples only!

Fig. 7.1 Exposure of CO2 concentrations to humans (Flemming et. al., 1997; IPCC 2005)

CO2 threshold levels

Monitoring

Base line – before CO2 injection

- Atmogeochemical monitoring
- Shallow groundwater monitoring
- Seismic monitoring

Feasibility study on applicability of seismic methods for CO₂ plume monitoring - ongoing

Baseline soil gas monitoring

• Main aim: to establish a soil gas baseline

to improve the storage site monitoring plan

- Periodical (3x/year) CO₂, CH₄, TP, O₂ + permeability; Ecoprobe-5
- Continuous (every hour) CO₂ using 5 permanent probes

Baseline soil gas monitoring

• Grids: 68 + 27 points for periodical monitoring

Baseline soil gas monitoring - results

Monitoring of existing boreholes

- To evaluate the potential leakage pathways via existing wells
- The boreholes in operation above the field are regarded as tight with no CH4 leakage indications based on the risk soil gas monitoring

Soil gas monitoring - Conclusions

Baseline soil gas monitoring

- Strong soil gas compositional **variability** provides evidence of influence by temperature (season of year), biological activity and soil wetness
- Land-use factors: the grasslands and forests show more stable soil gas composition when compared to cultivated fields.

Risk monitoring

 The boreholes in operation above the field are regarded as tight with no CH₄ leakage indications

Shallow groundwater monitoring

- Essential for understanding the shallow GW regime and establishing a baseline
- 16 sites periodically monitored each season of the year
- Monitored parameters: water table level (m), temperature (°C), conductivity (μS/cm), pH (-) + spring yeld (l*s⁻¹)

Shallow groundwater monitoring objects²⁵

Shallow groundwater monitoring

Examples of monitoring objects

Spring

Shallow borehole

Water pump

Pilot CO2 injection

- Legislation allows maximum injection of 100,000 tons of CO2 during pilot.
- 2 main cases are being considered:
 - 1. Trucking liquified CO2
 - 2. Separating CO2 from the flue gas available directly at the Zar-3 gathering centre

CO2SPICER PILOT TEST DRAFT OF THE FLOW DIAGRAM 120 T/D CASE	Meritko: A3	MND
Ing. Svoboda, 01/2023		

Pilot CO2 injection – Simulation results

CO2 saturation at the end of pilot

Reservoir fluids saturation at the beginning of pilot

Injection into water zone in Za7 well 120 t/d; 70,000 t cumulatively

Scenarios – Full-field Implementation

Several scenarios for full-field CO2 storage (after the pilot) are under consideration:

- Basecase storage after gas cap blowdown
- Alternative 1: Gas cap blowdown supported by CO2 injection into water zone.
- Alternative 2: Blue hydrogen generation by burning gas from the gas cap and waste CO2 injection into water zone
- Alternative 3: Classical EOR
- Alternative 4: Direct air capture

The CO2-SPICER project benefits from a € 2.32 mil. grant from Norway and Technology Agency of the Czech Republic.

PROJECT PARTNERS

